steam powered cars
electric cars
internal combustion cars


early internal combustion powered cars

The internal combustion engine is an engine in which the combustion, or rapid oxidation, of gas and air occurs in a confined space called a combustion chamber. This exothermic reaction of a fuel with an oxidizer creates gases of high temperature and pressure, which are permitted to expand. The defining feature of an internal combustion engine is that useful work is performed by the expanding hot gases acting directly to cause pressure, further causing movement of the piston inside the cylinder. For example by acting on pistons, rotors, or even by pressing on and moving the entire engine itself.

This contrasts with external combustion engines, such as steam engines and Stirling engines, which use an external combustion chamber to heat a separate working fluid, which then in turn does work, for example by moving a piston.

The term Internal Combustion Engine (ICE) is almost always used to refer specifically to reciprocating engines, Wankel engines and similar designs in which combustion is intermittent.

Gasoline Ignition Process

Electrical/Gasoline-type ignition systems (that can also run on other fuels as previously mentioned) generally rely on a combination of a lead-acid battery and an induction coil to provide a high voltage electrical spark to ignite the air-fuel mix in the engine's cylinders. This battery can be recharged during operation using an electricity-generating device, such as an alternator or generator driven by the engine. Gasoline engines take in a mixture of air and gasoline and compress to less than 170 psi and use a spark plug to ignite the mixture when it is compressed by the piston head in each cylinder.


Engines based on the two-stroke cycle use two strokes (one up, one down) for every power stroke. Since there are no dedicated intake or exhaust strokes, alternative methods must be used to scavenge the cylinders. The most common method in spark-ignition two-strokes is to use the downward motion of the piston to pressurize fresh charge in the crankcase, which is then blown through the cylinder through ports in the cylinder walls.

Spark-ignition two-strokes are small and light (for their power output), and mechanically very simple; they are also generally less efficient and more polluting than their four-stroke counterparts. However in single cylinder small motor applications cc for cc, a two-stroke engine produces much more power than equivalent 4 strokes due to the enormous advantage of having 1 power stroke for every 360 degrees of crankshaft rotation (compared to 720 degrees in a 4 stroke motor).

Two-stroke engines have been less fuel-efficient than other types of engines because unspent fuel being sprayed into the combustion chamber can sometimes escape out of the exhaust duct with the previously spent fuel. Without special exhaust processing, this can produce high pollution levels. Whilst two-stroke motors remain popular in Europe and Asia, they are penalised in some American markets such as California for this reason.

Research continues into improving many aspects of two-stroke motors, including direct fuel injection amongst other things. Initial results have produced motors that are much cleaner burning than their traditional counterparts.

Two-stroke engines are widely used in snowmobiles, lawnmowers, weed-whackers, chain saws, jet skis, mopeds, outboard motors and many motorcycles.

The largest compression-ignition engines are two-strokes, and are used in some locomotives and large ships. These engines use forced induction to scavenge the cylinders. An example of this type of motor is the Wartsila-Sulzer turbocharged 2 stroke diesel as used in large container ships. It is the most efficient and powerful engine in the world, with over 50% thermal efficiency for comparison the most efficient small 4 stroke motors are around 43.0% thermal efficiency (SAE 900648), and size is an advantage for efficiency due to the increase in the ratio of volume to area.

Diesel Engine Ignition Process

Compression ignition systems, such as the diesel engine and HCCI engines, rely solely on heat and pressure created by the engine in its compression process for ignition. Compression that occurs is usually more than three times higher than a gasoline engine. Diesel engines will take in air only, and shortly before peak compression, a small quantity of diesel fuel is sprayed into the cylinder via a fuel injector that allows the fuel to instantly ignite. HCCI type engines will take in both air and fuel but will continue to rely on an unaided auto-combustion process due to higher pressures and heat. This is also why diesel and HCCI engines are also more susceptible to cold starting issues though they will run just as well in cold weather once started. Most diesels also have battery and charging systems however this system is secondary and is added by manufacturers as luxury for ease of starting, turning fuel on and off which can also be done via a switch or mechanical apparatus, and for running auxiliary electrical components and accessories. Most old engines, however, rely on electrical systems that also control the combustion process to increase efficiency and reduce emissions.


The first internal combustion engines did not have compression, but ran on air/fuel mixture sucked or blown in during the first part of the intake stroke. The most significant distinction between modern internal combustion engines and the early designs is the use of compression and in particular of in-cylinder compression.

1509: Leonardo da Vinci described a compression-less engine.

1673: Christian Huygens described a compression-less engine.

17th century: English inventor Sir Samuel Morland used gunpowder to drive water pumps.

1780's: Alessandro Volta built a toy electric pistol ([5]) in which an electric spark exploded a mixture of air and hydrogen, firing a cork from the end of the gun.

1794: Robert Street built a compression-less engine whose principle of operation would dominate for nearly a century.

1806: Swiss engineer François Isaac de Rivaz built an internal combustion engine powered by a mixture of hydrogen and oxygen.
1823: Samuel Brown patented the first internal combustion engine to be applied industrially. It was compression-less and based on what Hardenberg calls the "Leonardo cycle," which, as this name implies, was already out of date at that time.

1824: French physicist Sadi Carnot established the thermodynamic theory of idealized heat engines. This scientifically established the need for compression to increase the difference between the upper and lower working temperatures.

1826 April 1: The American Samuel Morey received a patent for a compression-less "Gas Or Vapor Engine".

1838: a patent was granted to William Barnet (English). This was the first recorded suggestion of in-cylinder compression.
1854: The Italians Eugenio Barsanti and Felice Matteucci patented the first working efficient internal combustion engine in London (pt. Num. 1072) but did not go into production with it. It was similar in concept to the successful Otto Langen indirect engine, but not so well worked out in detail.

1860: Jean Joseph Etienne Lenoir (1822 - 1900) produced a gas-fired internal combustion engine closely similar in appearance to a horizontal double-acting steam beam engine, with cylinders, pistons, connecting rods, and flywheel in which the gas essentially took the place of the steam. This was the first internal combustion engine to be produced in numbers.
1862: Nikolaus Otto designed an indirect-acting free-piston compression-less engine whose greater efficiency won the support of Langen and then most of the market, which at that time, was mostly for small stationary engines fuelled by lighting gas.
1870: In Vienna Siegfried Marcus put the first mobile gasoline engine on a handcart.

1876: Nikolaus Otto working with Gottlieb Daimler and Wilhelm Maybach developed a practical four-stroke cycle (Otto cycle) engine. The German courts, however, did not hold his patent to cover all in-cylinder compression engines or even the four stroke cycle, and after this decision in-cylinder compression became universal.

Karl Benz1879: Karl Benz, working independently, was granted a patent for his internal combustion engine, a reliable two-stroke gas engine, based on Nikolaus Otto's design of the four-stroke engine. Later Benz designed and built his own four-stroke engine that was used in his automobiles, which became the first automobiles in production.

1882: James Atkinson invented the Atkinson cycle engine. Atkinson’s engine had one power phase per revolution together with different intake and expansion volumes making it more efficient than the Otto cycle.

1891 - Herbert Akroyd Stuart built his oil engine, leasing rights to Hornsby of England to build them. They build the first cold start, compression ignition engines. In 1892, they installed the first ones in a water pumping station. An experimental higher-pressure version produced self-sustaining ignition through compression alone in the same year.

1892: Rudolf Diesel developed his Carnot heat engine type motor burning powdered coal dust.

1893 February 23: Rudolf Diesel received a patent for the diesel engine.

1896: Karl Benz invented the boxer engine, also known as the horizontally opposed engine, in which the corresponding pistons reach top dead centre at the same time, thus balancing each other in momentum.

1900: Rudolf Diesel demonstrated the diesel engine in the 1900 Exposition Universelle (World's Fair) using peanut oil (see bio-diesel).

1900: Wilhelm Maybach designed an engine built at Daimler Motoren Gesellschaft—following the specifications of Emil Jellinek—who required the engine to be named Daimler-Mercedes after his daughter. In 1902 automobiles with that engine were put into production by DMG.